The importance of transposable element curation

Jessica M. Storer
Associate Research Scientist
O'Neill Lab
12/2/2023

Transposable elements (TEs)

- Discovered by Barbara McClintok
- Zea mays: kernel color
- Nobel Prize in 1983

Transposable elements (TEs)

Utility of TEs

- Genome sequencing projects
- Transgenic organisms
- E.g., zebrafish, Arabidopsis
- T-DNA seed lines
- Generation of new mutants
- Phylogenetically informative
- E.g. Alu elements
- Homoplasy-free
- Mode of evolution is unidirectional, i.e., they do not revert to their ancestral state

New regulatory pathways
Disease phgenotypes
(e.g. cancer, Alzheimer's, etc.)
(e.g. exaptation of TE
transposase, producing
RAG1 \& RAG2 proteins)

Why do we need manual curation?

- Fragmentation due to large scale deletions, interruptions by nested insertions of additional TEs, and through poor insertion fidelity.
- Because of their mostly neutral decay, there are no conserved regions that can anchor the alignment nor are there open reading frames free from indel accumulation
- Copies are often derived from a TE rapidly evolving in a genome, so that they represent a mixed bag of ancestral forms.
- Low complexity regions and internal repetition are common features.
- The oldest detectable TE copies have accumulated over 35% substitutions since their arrival and given their neutral decay have a substitution level of more than 70\% between each other

RepeatModeler vs. curated TE families - human

54\% repeat content

Analysis w/ manually curated library

RepeatModeler vs. curated TE families - fruit fly

Enhanced ability to classify and identify repeats with carefully-curated dataset

Alu mobile elements

- SINEs (short interspersed element)
- Non-autonomous
- ~300 bp
- ~1 million copies in the human genome
- Transcribed by RNA polymerase III
- Derived from 7SL RNA
- Homoplasy-free
- No known mechanism for the specific removal of SINE elements from the genome
- Mode of evolution is unidirectional, i.e. they do not revert to their ancestral state
- Known ancestral state = absence of Alu element
- Easy to genotype
- Elements facilitate a comprehensive analysis of phylogeny

Homoplasy-free (nearly)

Ray et al. 2006 "SINEs of a Nearly Perfect Character" Systematic Biology 55(6):928-935

A: Incomplete lineage sorting: ~0.0006 \star events/insertion

Knowledge of primate behavior
B: Near parallel insertions: $\quad \sim 0.0004$ events/insertion

Sequencing
C: Precise parallel insertions: ~0.005 events/insertion

Sequencing - subfamily analysis
D: SINE deletion: No known mechanism

- Insertion event

Filtering your data

- High copy gene families
- Processed pseudogenes
- Generally from highly transcribed genes
- Simple repeats/low complexity
- Redundancy
- There is not any single \% divergence cut off or general strategy that will work for all TE types across all organisms
- Unique repertoire of elements in each species
- Genomic gain and loss
- Adaptations
- Flight
- Generation time
- Diet
-

A beginner's guide to manual curation of transposable elements

Beginner Advanced

 Curation Guidelines for de novo

 Curation Guidelines for de novo Generated Transposable Element Generated Transposable Element Families

 Families}Robert Hubley, ${ }^{1}$ Jeb Rosen, ${ }^{1}$ and Arian F. A. Smit ${ }^{1}$
${ }^{1}$ Institute for Systems Biology, Seattle, Washington
${ }^{2}$ Corresponding author: jessica.storer@isbscience.org

Input data type

- Less maintenance of data; no provenance
- Cannot troubleshoot in downstream processes
- Greater chance of original consensus sequence changes
- Subfamily splitting may no longer be maintained

- Provenance of consensus sequence derivation is maintained
- More data maintained
- Less chance of major changes to consensus sequence made at the end of the curation process

VISUALIZE, VISUALIZE, VISUALIZE!

ALWAYS check your data BEFORE doing ANY ADDITIONAL STEPS
\$ viewMSA.pl -stockholm <file.stk>

Orientation Sort Normal Sort End Sort Divergence Sort

\#3
SINE (Alu) (could also be soloLTR)

- Low(er) divergence at terminal ends

Edge to edge matches

Summary View rnd-1_family-102

LTR/ERV over-extension

- 1939 taro models submitted; 1173 (60.5\%) LTR/ERV elements
- Types of LTR alignments observed

On to the manual part and a lot more detail

Divergence Sort

Matrix

- Corresponds to the ratio of the nucleotide's observed frequency given an ancestral (consensus) base over the nucleotide's frequency in the background
- 20 kb flanking the transposon was used for background frequency
- Substitution frequency is
nucleotide in the query sequence (derived state)

	A	G	C	T	A	G	C	T	A	G	C	T	
	14p4	9 g.m	atri		20p4	g . m	atri		25p	g.m	tr		Differing ages; same GC content
A	10	-10	-16	-19	9	-7	-13	-15	9	-5	-12	-13	
G	-6	10	-18	-18	-3	9	-15	-14	-2	8	-13	-12	
C	-18	-18	10	-6	-14	-15	9	-3	-12	-13	8	-2	
T	-19	-16	-10	10	-15	-13	-7	9	-13	-12	-5	9	
	20, 3	g. m	ri		201	g.	natr		20×5	g.	matri		
A	8	-7	-15	-17	9	-8	-15	-17	9	-6	-13	-14	Same age; differing GC content
G	-4	11	-13	-14	-4	10	-15	-15	-3	9	-14	-14	
C	-14	-13	11	-4	-15	-15	10	-4	-14	-14	9	-3	
T	-17	-15	-7	8	-17	-15	-8	9	-14	-13	-6	9	

- Age of the repeat
- GC content of a given locus

Alignment

- Sensitive alignment matrices and gap parameters for neutrally-evolving DNA
- Developed for TE annotation and used in RepeatMasker for years
- Derived from ancient DNA transposon data delimited by divergence and CG background
- Multiple sequence alignment method
- Iterative transitive search, bootstrapped with the best matching sequence

Refinement

- Iterative process of extension and re-alignment to the consensus sequence until the consensus sequence stabilizes

Refinement

- Interactive
- Easily visualize the process
- Matrix used
- Search engine used
- Divergence of your alignment
- Areas of possible extension

A


```
*)
    voxdive ce, Gopotitt-25.
ITERTION: D
Morking on oxanglez_con
```



```
*)
```

B

- Interactive mode

- Choose the option that best fits the data
- Accept all changes
- Pad the sequence and accept all changes
- Expand the sequence in the 5^{\prime} direction
- Expand the sequence in the 3^{\prime} direction
s (kip), e(hangeinbotweenHs), x(pandandchange), bleginexpand) or $5\left({ }^{\prime}\right)$, e(nderpand) or $3(\cdot), z \pi-z z$ (range), d(one)

Uiorking on exanple1_con
Unique aligned sequences: 131
Total Crossnatch score: 3 Se4572
Per Base Average:
Per Base Average: 4.29 : 304672
Kimura Divergence:
Kimura Divergene: 0 : 0.118839309124563 , 01182 olioned bas)
Changes:
Changes:
consensus

refiexarole1 con

onsensus


```
ref:exanple1_con
```

dandchange), b(eginexpand) or $5\left({ }^{\prime}\right)$, e(ndexpand) or $3\left(^{\prime}\right), 9 \%-92$ (range), d(one)
(range only works if the new and old consensus have the sane positions at the start and end of the range.
5^{5}
Keeping only 5^{\prime} H-pad changes.
ITEARTION: 7
Korking on exanplet_con

Total Crossnaten seore: 3054640
Per Dase Average: 4.91

Kepping only $5^{\prime} \mathrm{H}$-pac changes.
Working on exanplet con
Unique sligned sequences: 131
Total Cossnatch socro: 386666
Per Base Average: 4,92
Per Base Average:
Kimura Diver
Changes:
Changes:
consensus

teriel

先 range only works if the new and old consensus have the sane positions at the start and end

Extension of truncated models

- Consensi derived from de novo repeat finders are often truncated
- Need to extend into the flanking sequence in order to get an accurate and full-length model!
- H-pad
- Positively-scoring
- Part of IUPAC code, but not in consensi or genomic sequence
- Support protocol
- Get flanking sequence

Get flanking sequence

```
$ extendFlankingSeqs.pl -d(atabase) <2bit genome file> -i(nput)
<cross_match file> -o(utput) <fasta file>
(command is seen in supplemental protocol of publication!)
NOTE: the input file is the .out file in most cases (this may trigger RepeatMasker flashbacks....)
```


Alternatively....

```
\$ bedtools slop -i <input bed file> [options] > output.bed
\$ bedtools getfasta -fi <genome> -bed <output from bedtools slop> -fo
<output fasta file>
```


LTR/ERV sequence structure

Primer binding site
Polypurine tract

- LTR = long terminal repeat
- 200-1000 bp
- Prone to internal deletions in LTR region
- Recombination to form new subfamilies
- Ectopic recombination common

- Many soloLTRs
- LTR-int-LTR-int-LTR structures

- LTR structural features
- 5' TG
- 3' CA
- Possible subfamily structure?

COCOCALAOTCAG-CAGOAA-OTAOCCAOA-AQQAROCCOCCO-COC-TTTTTCCTCTTTAAGOAGTT-O--DSALT-OTCTOGTOGAOS-ACCTTTOC

 TTAAGG-TG
AGTACCT

Sequence structures to consider

RV/LTR
\$ TSD.pl

- Consistent TSD length
- True for
soloLTRs and FL
ERV
- 5' TG; 3' CA
- ORFs?
- Homology to LINE 3'
sequence
- Exception is Alu
- RNA polymerase III A and B box
- Hairpin structure similar to tRNA?

DNA

- Terminal inverted repeats (TIRs)
- Can be seen via dotplot
- Curated termini

Reducing redundancy

\$ rmblast.pl <consensus_sequecnes.fa> [options]

Crossmatch-like output (similar to RepeatMasker output)

Table 2 Rmblast.pl Output of the Eight Subfamilies Produced by ClusterPartialMatchingSubs.pl Analysis of example1

SW	Divergence	\% del	\% ins	Query	Query start	Query end	A_left	Target	Target start	Target end	T_left
4920	0.88	0	0	Cluster0	1	571	0	Cluster0	1	571	0
2704	2.1	0.35	32.33	Cluster0	1	571	0	Cluster12	1	433	0
2009	11.88	2.21	3.06	Cluster0	210	571	0	Cluster8	132	490	0
4051	0.22	0	0	Cluster10	1	465	0	Cluster10	1	465	0
2941	10.54	7.1	0.2	Cluster10	1	465	0	Cluster7	2	498	0
2725	8.6	13.76	1.34	Cluster10	1	465	0	Cluster6	1	522	0
3822	0.23	0	0	Cluster12	1	433	0	Cluster12	1	433	0
2735	2.77	32.33	0.35	Cluster12	1	433	0	Cluster0	1	571	0
4579	0.19	0	0	Cluster2	1	522	0	Cluster2	1	522	0
3488	1.72	0	14.73	Cluster2	1	522	0	Cluster5	32	486	0
3076	4.62	1.93	14.5	Cluster2	4	522	0	Cluster8	29	490	0
4268	0.21	0	0	Cluster5	1	486	0	Cluster5	1	486	0
3503	5.56	2.06	1.85	Cluster5	1	486	0	Cluster8	4	490	0
3452	1.98	14.73	0	Cluster5	32	486	0	Cluster2	1	522	0
4562	0	0	0	Cluster6	1	522	0	Cluster6	1	522	0
2787	11.3	1.53	6.64	Cluster6	1	522	0	Cluster7	2	498	0
2734	7.66	1.34	13.76	Cluster6	1	522	0	Cluster10		465	0
4354	0	0	0	Cluster7	1	498	0	Cluster7	1	498	0
2941	9.86	0.2	7.1	Cluster7	2	498	0	Cluster10	1	465	0
2806	11.87	6.64	1.53	Cluster7	2	498	0	Cluster6	1	522	0
4346	0.41	0	0	Cluster8	1	490	0	Cluster8	1	490	0
3524	5.54	1.85	2.06	Cluster8	4	490	0	Cluster5	1	486	0
3045	5.19	14.5	1.93	Cluster8	29	490	0	Cluster2	4	522	0
2053	11.98	3.06	2.21	Cluster8	132	490	0	Cluster0	210	571	0

Subfamily assignment

- When to analyze subfamilies
- Truncation patterns
- DNA transposon deletion products
- LTR recombination
- Divergence
- Coseg
- Full-length TE instances
- CD-HIT-based script
- Length differences

Subfamily assignment - LTR

A

B

C

D

E

F

G
$\equiv \equiv$
H

* Each sequence is represented by a single row (sorted by start position) where the color gradient indicates alignment quality (red=low; blue=high) over 10bp non-overlapping windows.

Subfamily assignment - DNA

PtERV (Pan troglodytes endogenous retrovirus) subfamily analysis

PtERV subfamily analysis

Strategy:

1. COSEG - 3 subfamilies produced
2. Separate subfamilies by divergence and/or length polymorphism

- cross_match
- Divergence analysis
- Split 3 COSEG subfamilies into 6 subfamilies

Subfamily	LTR	Int	LTR	Avg. div. (stdev)	Additional subfamilies?
rep0	1 a	1 b	1 a	1.54 ± 0.9	2
rep1	1 c	$1 \mathrm{c} / \mathrm{d}$	$1 \mathrm{c} / \mathrm{d}$	1.59 ± 0.55	2
rep2	1 a	1 a	1 a	1.6 ± 1.06	2
rep3	$2 \mathrm{~b} / \mathrm{c}$	$2 \mathrm{a} / \mathrm{b}$	$2 \mathrm{~b} / \mathrm{c}$	1.87 ± 0.71	2
rep4	1 c	1 a	$1 \mathrm{c} / \mathrm{d}$	2.19 ± 0.81	2
rep5	$1 \mathrm{a} / \mathrm{c}$	$1 \mathrm{~b} / \mathrm{c} / \mathrm{d}$	$1 \mathrm{a} / \mathrm{c}$	4.99 ± 2.18	3

rep2

 rep4
 rep5

Telomere-to-telomere (T2T) - CHM13

From telomere to telomere: the transcriptional and epigenetic state of human repeat elements

Savannah J. Hoyt, Jessica M. Storer, Gabrielle A. Hartley, Patrick G. S. Grady, Ariel Gershman, Leonardo G. de Lima, Charles Limouse, Reza Halabian, Luke Wojenski, Matias Rodriguez, (D) Nicolas Altemose, (D) Leighton J. Core, Jennifer L. Gerton, (D) Wojciech Makalowski, Daniel Olson, Jeb Rosen, Arian F. A. Smit, (D) Aaron F. Straight, (D) Mitchell R. Vollger, (D) Travis J. Wheeler, Michael C. Schatz, Evan E. Eichler, Adam M. Phillippy, (D) Winston Timp, Karen H. Miga, (D) Rachel J. O'Neill doi: https://doi.org/I0.110I/202I.07.12.45I456

Composite repeats - CHM13

19 composites - 2.8 Mb

Complex/Composite

-

BMC Genomics

Helpful links

Publications

Effect of different alignment tools on reconstructing TE sequences
TE discovery
methodologies
Visualizing annotations

Advanced curation protocol

Tools

RepeatModeler utilities

TE Aid

SODA
FlexiDot github

Beginner curation protocol

