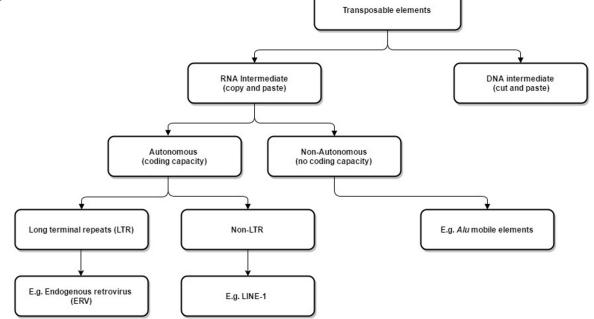
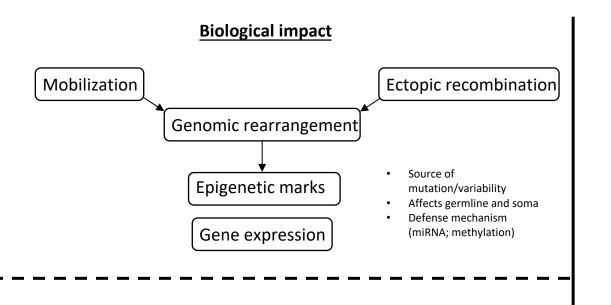

The importance of transposable element curation

Jessica M. Storer Associate Research Scientist O'Neill Lab 12/2/2023

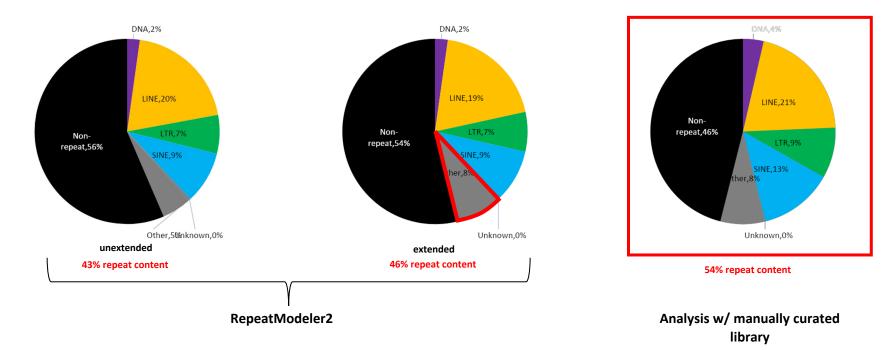



Transposable elements (TEs)

- Discovered by Barbara McClintok
 - o Zea mays: kernel color
 - o Nobel Prize in 1983

Transposable elements (TEs)

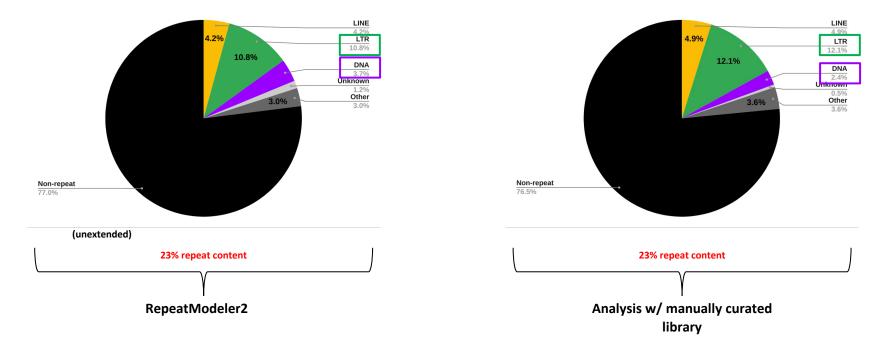
Disease phgenotypes (e.g. cancer, Alzheimer's, etc.) New regulatory pathways (e.g. exaptation of TE transposase, producing RAG1 & RAG2 proteins)


Utility of TEs

- Genome sequencing projects
- Transgenic organisms
 - E.g., zebrafish, *Arabidopsis*
 - T-DNA seed lines
 - Generation of new
 mutants
- Phylogenetically informative
 - E.g. Alu elements
 - Homoplasy-free
 - Mode of evolution is unidirectional, i.e., they do not revert to their ancestral state

Why do we need manual curation?

- <u>Fragmentation</u> due to large scale deletions, interruptions by nested insertions of additional TEs, and through poor insertion fidelity.
- Because of their mostly <u>neutral decay</u>, there are no conserved regions that can anchor the alignment nor are there open reading frames free from indel accumulation
- Copies are often derived from a TE rapidly evolving in a genome, so that they represent a **mixed bag of ancestral forms**.
- **Low complexity regions** and internal repetition are common features.
- The oldest detectable TE copies have accumulated over 35% substitutions since their arrival and given their neutral decay have a substitution level of more than <u>70% between each other</u>


RepeatModeler vs. curated TE families - human

Enhanced ability to classify and identify repeats with carefully-curated dataset

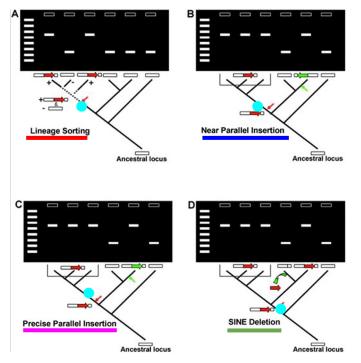
*Other: satellites and simple repeats

RepeatModeler vs. curated TE families - fruit fly

Enhanced ability to classify and identify repeats with carefully-curated dataset

*Other: satellites and simple repeats

Alu mobile elements



- SINEs (short interspersed element)
- Non-autonomous
- ~300 bp
- ~1 million copies in the human genome
- Transcribed by RNA polymerase III
- Derived from 7SL RNA

• Homoplasy-free

- No known mechanism for the specific removal of SINE elements from the genome
- Mode of evolution is unidirectional, i.e. they do not revert to their ancestral state
- Known ancestral state = absence of *Alu* element
- Easy to genotype
- Elements facilitate a comprehensive analysis of phylogeny

Homoplasy-free (nearly)

Ray et al. 2006 "SINEs of a *Nearly* Perfect Character" *Systematic Biology* 55(6):928-935 A: Incomplete lineage sorting: ~0.0006 events/insertion

Knowledge of primate behavior

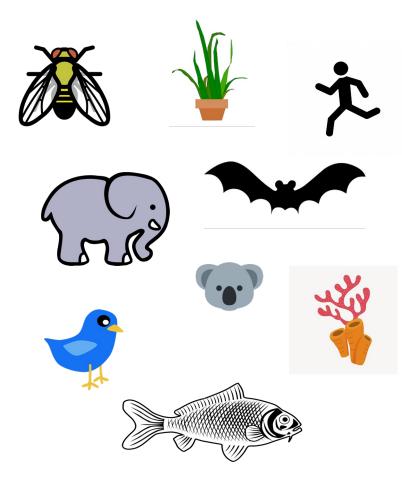
B: Near parallel insertions: ~0.0004 events/insertion

Sequencing

C: Precise parallel insertions: ~0.005 events/insertion

Sequencing - subfamily analysis

D: SINE deletion: No known mechanism


Insertion event

Filtering your data

- High copy gene families
- Processed pseudogenes
 - Generally from highly transcribed genes
- Simple repeats/low complexity
- Redundancy
 - There is not any single % divergence cut off or general strategy that will work for all TE types across all organisms
 - Unique repertoire of elements in each species
 - Genomic gain and loss
 - Adaptations
 - Flight
 - Generation time

.

Diet

METHODOLOGY

A beginner's guide to manual curation of transposable elements

Clement Goubert^{1,2}, Rory J. Craig³, Agustin F. Bilat⁴, Valentina Peona⁵, Aaron A. Vogan⁵ and Anna V. Protasio^{6,7*}

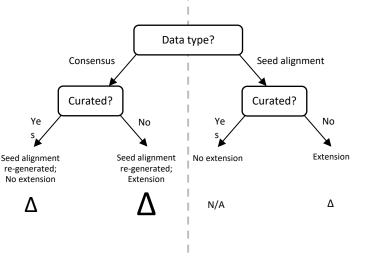
Beginner

Advanced

Curation Guidelines for *de novo* **Generated Transposable Element Families**

Robert Hubley,¹ Jeb Rosen,¹ and Arian F. A. Smit¹

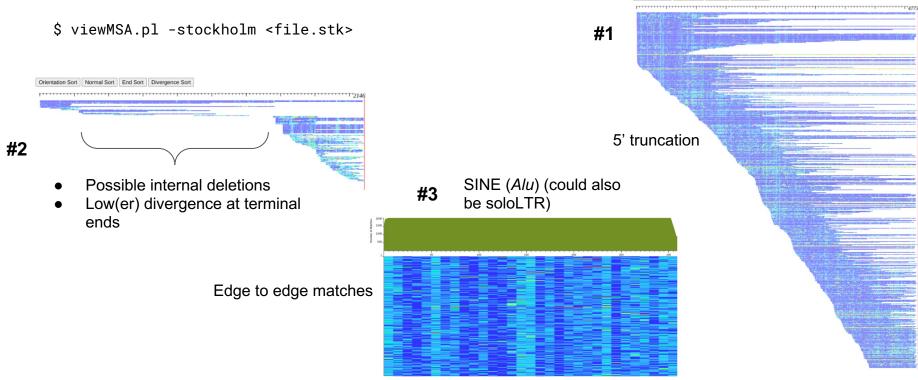
¹Institute for Systems Biology, Seattle, Washington ²Corresponding author: *jessica.storer@isbscience.org*


Beginner vs. Advanced:

Open Access

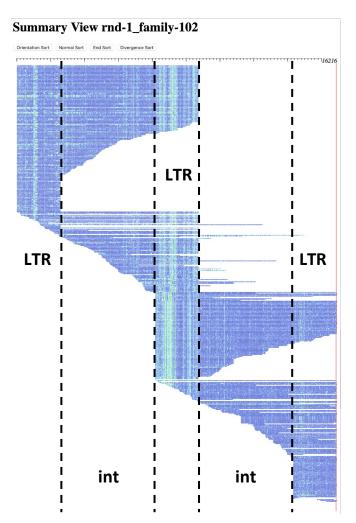
- Starting material
 - Consensus vs.
 - stockholm/alignment
- Collecting copies/insertions
 - BLAST vs. RepeatMasker
- All models vs. individual models
- Alignment
 - MAFFT vs. Refiner
- Consensus generation
 - EMBOSS vs. Refiner

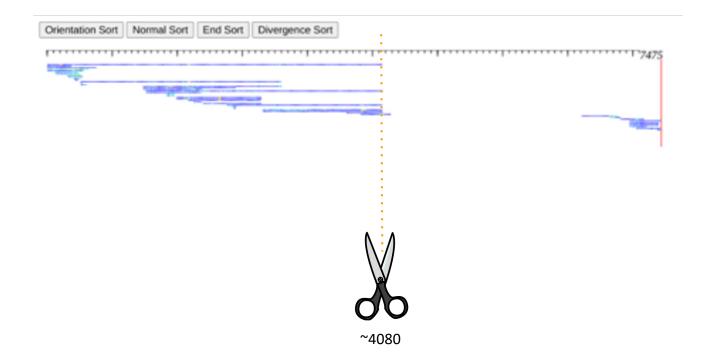
Input data type


- Less maintenance of data; no provenance
 - Cannot troubleshoot in downstream processes
- Greater chance of original consensus sequence changes
- Subfamily splitting may no longer be maintained

- Provenance of consensus sequence derivation is maintained
 - More data maintained
- Less chance of major changes to consensus sequence made at the end of the curation process

VISUALIZE, VISUALIZE, VISUALIZE!

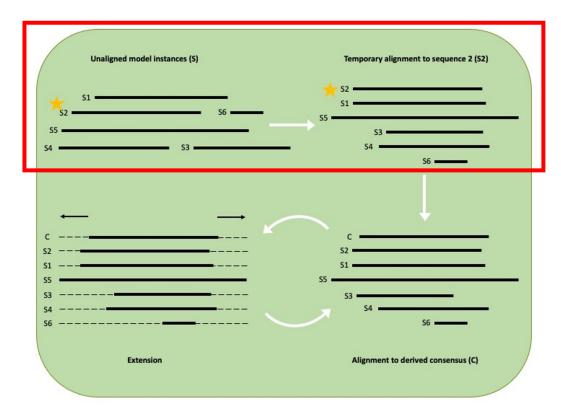

ALWAYS check your data BEFORE doing ANY ADDITIONAL STEPS


Orientation Sort Normal Sort End Sort

LTR/ERV over-extension

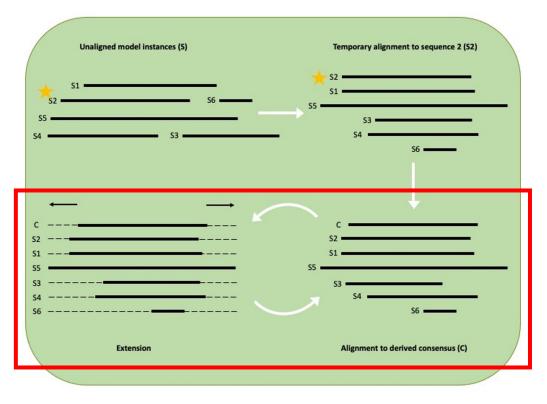
- 1939 taro models submitted; 1173 (60.5%) LTR/ERV elements
- Types of LTR alignments observed

On to the manual part and a lot more detail


Matrix

- Corresponds to the ratio of the nucleotide's observed frequency given an ancestral (consensus) base over the nucleotide's frequency in the background
 - 20 kb flanking the transposon was used for background frequency
- Substitution frequency is dependent upon:
 - Age of the repeat
 - GC content of a given locus

	nuc A	cleo G	tide C	in T	-	aery s A G	-	nce T	(derived) A	sta G		т	
A G C		-10 10 -18	-16 -18 10	-19 -18 -6	- -1		-13 -15 9	-15 -14 -3	25p 9 -2 -12 -13	-5 8 -13	-12 -13 8	-13	 Differing ages; same GC content
A G C	-	-7 11 -13	-15 -13	-17 -14	- -1	p <mark>43g</mark> . 9 -8 4 10 5 -15 7 -15	-15 -15 10	-17 -15	20g5 9 -3 -14 -14	-6 9 -14	natr: -13 -14 9 -6	-14	 Same age; differing GC content


Alignment

- Sensitive alignment matrices and gap parameters for neutrally—evolving DNA
 - Developed for TE annotation and used in RepeatMasker for years
 - Derived from ancient DNA transposon data delimited by divergence and CG background
- Multiple sequence alignment method
 - Iterative transitive search, bootstrapped with the best matching sequence

Refinement

 Iterative process of extension and re-alignment to the consensus sequence until the consensus sequence stabilizes

Refinement

Interactive

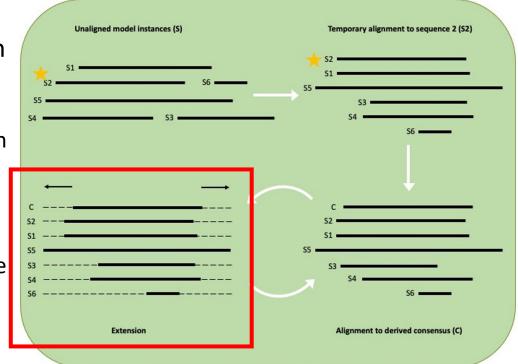
- Easily visualize the process
 - Matrix used
 - Search engine used
 - Divergence of your alignment
 - Areas of possible extension

A			
	## alignAndCallCon	isensus (aka dothemsimple/dothermultiple.pl)	
	## Version 2.0.2-b	ieta-2	
	# Single Family Mo	de	
	W Engine: Imblast	Matrix: 25p41g-Hpad.matrix, Bandwidth: 40, Minmatch: 7, Minscore: 200,	
	:	Maxdiv: 60, GapInit: -25, InsGapExt: -5, DelGapExt: -4	
		Insuapext: -o, beloopext: -4	
	ITERATION: 1 Morking on example	1_con	
	Unique aligned seq Total Crossmatch S	uences: 125	
	Per Base Average:	4.41	
	Kimura Divergence:	0.147704123552758 60686 aligned bps)	
В			
	## version 2.0.2-b	nsensus (aka dothemsimple/dothemmultiple.pl) beta-2	
	**		
	# Single Family Mc # Engine: rmblast	Matrix: 14p41g-Hpad.matrix, Bandwidth: 40,	
	:	Minmatch: 7, Minscore: 200, Maxdiv: 60, GepInit: -33,	
		InsGapExt: -7, DelGapExt: -6	
	# Extension Mode, # Starting Round I	1 sequences have Hpads Index: 2	
	ITERATION: 1		
	Working on example Unique aligned seg		
	Total Crossmatch S	Score: 274884	
	Per Base Average: Kinura Divergence:	4.68 0.127627183695182 (57462 aligned bps)	
	Changes:		
	consensus	1 AA00NNNC0DAAC-T-0TCT00T00A00ACCTTT0-00CCCC0-CCCCC-CAC-CC-AC-0T00AAA0N0CCT ???????	65
	ref:example1_con	1 HHHHHHHCODAAC-T-9TCT09T09A90ACCTTT0-90CCCC0-CCCCC-C-ACQCC-AC-9T09AAA0N0CCT	65
	consensus	66 AACTTCCCGATGA-GGA-AAGCCCCTCCTCCCC-C-GCAGGGAGGGTCCCTT-A-TCTCACTCTGTGT	129
	ref:example1_con	66 AACTTCCCGATGA-GGA-AAGCCCCTCCTCCCC-C-GCAGGGGGGGCCCCTT-A-TCTCACTCTGTC-NC-NG	129
	consensus	130 GCCCGGCCCGANMCCAGCAACCTTCCCGCCCGGCAACCCCCC-CC-C-CCCCGCAAGGAGGGTCCCTT- ?? i? ? i	189
	ref:example1_con	138 GCCCGGCCCGAGGCCAGCAACCTTCCCGCCCGGCAACCCCCCCC	187
	consensus	199 -CT-CACTCC000CC-CCGTT-CCC-C08CCAC0TG-GAAA060CCTAACTTCCC0ATAA600AA0CC 7	250
	ref:example1_con	188 -CT-LACTCOMCC-CC	378
	ref:example1_con	346 CUB-AACCAATCACC	378
	consensus	420 CCC	479
	ref:example1 con	415 CCC	465
	consensus	471TA	494
	ref:example1_con	? 466CCA0TATA	489
	consensus	495 AACCEA-CCEAAC-AAAGAAAGCCEGCCECEAGACTECTEACTCTTCCCCCEGEC-ACEAETCCEECCEEG-AGACTCTCCAAT-AAA	579
	ref:example1_con	490 AACCBA-CCBAAC-AAAGAAA6CCBGCGCGABACTGCTGACTCTTCCCCCGGC-NCGAGTCCAGTCCGGCCCGGAGACTCTCCAAT-AAA	574
	consensus	588 BCCTGNAC-TG0-T-CACCACGCCT-CTCGCCTGGTGTAATTCCGTCGCGC-CCTGGGD-TCCAAGCTACGAGGGTCCGGGC-	655
	ref:example1_con	7 575BCCNBNAC-TGB-T-CACCACGCCT-CCCGCCTGGTCTAATTCGGTCGCSC-CTTGBGB-TCCAAGCNACGAGGGTCCGGGC-	650
	consensus	656 AGGTCAGAACCGGGGTCGCACA 2 222222	679
	ref:example1_con	651 AOGTCAGACANCCGGGGHHHHHHH	674

s(kip),c(hangeinbetweenHs),x(pandandchange), b(eginexpand) or 5('),e(ndexpand) or 3('),##=## (range),d(one)
A range only works if the new and old consensus have the same positions at the start and end of the range.

• Interactive mode

- Choose the option that best fits the data
 - Accept all changes
 - Pad the sequence and accept all changes
 - Expand the sequence in the 5' direction
 - Expand the sequence in the 3' direction


consensus ref:example1_con	2222222 699 ACGAGGGTCCGGGC-AGGTCAGACAACCGGGGTCGCACAHBHHHHH	7
	699 ACGAGGGTCCGGGC-AGGTCAGACAACCGGGGTCGCACANNINNCNN	7
ref:example1_con	1 HHHHHHHAGGAA-GTAGCCAGA-AAGAAAGCCGCCG-CCC-TTTTTCCTCTTTAAGGAGTT-GGGANT-GTCTGGTGGAGG-ACCTTTGGGC	8
consensus	1 AGTCAGCAGGAA-GTAGCCAGA-AAGAAAGCCGCCG-CCC-TTTTTCCTCTTTAAGGAGTT-OGGANT-GTCTGGTGGAGG-ACCTTTGGGC ???????	8
Changes:		
er Base Average: 4.92 imura Divergence: 0.11853193119	00716 (61354 aligned bps)	
otal Crossnatch Score: 306066		
nique aligned sequences: 131		
orking on example1_con		
TERATION: 8		
eeping only 5' H-pad changes.		
	d old consensus have the same positions at the start and end of the range.	
(kin) c(hanceinhetweenks) v(nar	ndandchange), b(eginexpand) or 5('),e(ndexpand) or 3('),##−## (range),d(one)	
ref:example1_con	2222222 708 CC000C-ADUTCAGACAACC0000TCCCACAHINHHH	
consensus	708 CC000C-ADDTCAGACAACC000GTC0CACANNENCNN	
ref:example1_con	??????? i 1 HHHHHHHAGCCAGA-AGGAAAGCCGCCG-CCC-TTTTTCCTCTTTAAGGAGTT-GGGANT-GTCTGGTGGAGG-ACCTTTGGGCCC-C	
consensus	1 AGGAAGTAGCCAGA-AAGAAAGCCGCCG-CCC-TTTTTCCTCTTTAAGGAGTT-GGGANT-GTCTGGTGGAGG-ACCTTTGGOCCC-C	
Changes:	AATA 1 01705 9170ug Das 1	
Per Base Average: 4.91 Kimura Divergence: 0.11874337841	19929 K 61282 aligned bps)	
otal Crossmatch Score: 305440		
Unique aligned sequences: 131		
TERATION: 7 Working on example1_con		
Geeping only 5' H-pad changes.		
5		
Trange only works if the new an	nd old consensus have the same positions at the start and end of the range.	
s(kip),c(hangeinbetweenHs),x(pan	dandchange), b(eginexpand) or 5(°),e(ndexpand) or 3(°),##−## (range),d(one)	
ref:example1_con	689 GGGTCCGGGC-AGGTCAGACAACCGGGGTCGCACAHHHHHHH	
consensus	689 GGGTCCGGGC-AGGTCAGACAACCGGGGTCGCACANNINCNIN 2222222	1
ref:example1 con	2772277 i7 ? 1 HHHHHHHAGGAAGNCCGCCNCCC-TTTTTCCTCTTTAAGGAGTT-GGGANT-GTCTGGTGGAGG-ACCTTTGGGCCC-C	
consensus	1 ACCCAGAAGGAAAGCCGCCGCCC-TTTTTCCTCTTTAAGGAGTT-GGGANT-GTCTGGTGGAGG-ACCTTTGGGCCC-CCGCCGCCCC-TTTTCCTCTTTAAGGAGTT-GGGANT-GTCTGGTGGAGG-ACCTTTGGGCCC-C	
Kimura Divergence: 0.11883936012 Changes:	(61182 aligned bps)	
Per Base Average: 4.98		
Total Crossnatch Score: 304572		
Unique aligned sequences: 131		
ITERATION: 6 Working on example1_con		
Keeping only 5' H-pad changes.		

range only works if the new and old consensus have the same positions at the start and end of the range.

Done! Consensus file (example1_con.fa) has been updated with any previously made selections

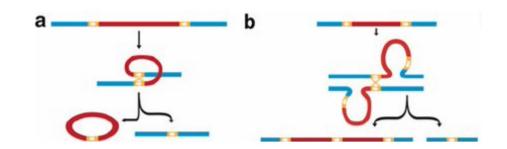
Extension of truncated models

- Consensi derived from *de novo* repeat finders are often truncated
 - Need to extend into the flanking sequence in order to get an accurate and full-length model!
- H-pad
 - Positively-scoring
 - Part of IUPAC code, but not in consensi or genomic sequence
- Support protocol
 - Get flanking sequence

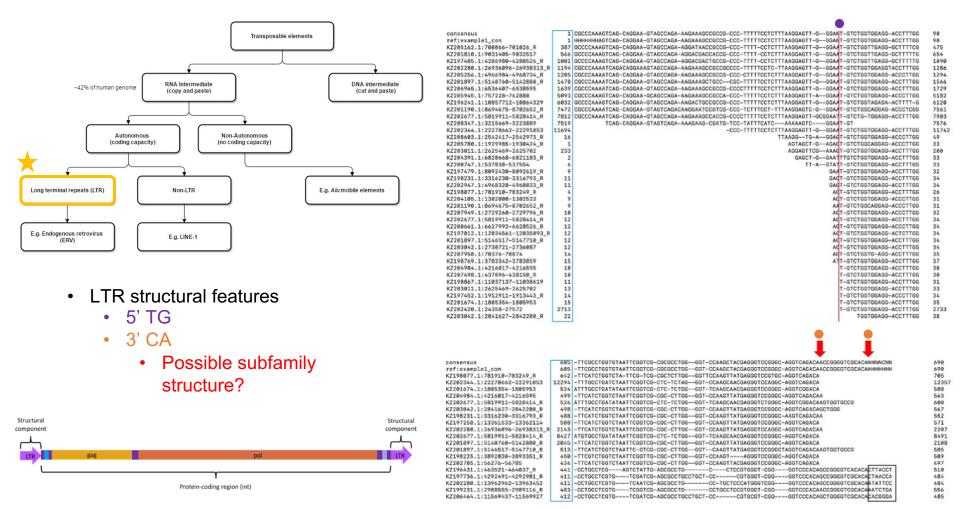
Get flanking sequence


```
$ extendFlankingSeqs.pl -d(atabase) <2bit genome file> -i(nput)
<cross_match file> -o(utput) <fasta file>
```

(command is seen in supplemental protocol of publication!)


NOTE: the input file is the .out file in most cases (this may trigger RepeatMasker flashbacks....)

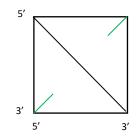
```
Alternatively....
$ bedtools slop -i <input bed file> [options] > output.bed
$ bedtools getfasta -fi <genome> -bed <output from bedtools slop> -fo
<output fasta file>
```


LTR/ERV sequence structure

- LTR = long terminal repeat
 - 200-1000 bp
- Prone to internal deletions in LTR region
- Recombination to form new subfamilies
- Ectopic recombination common
 - Many soloLTRs
 - LTR-int-LTR-int-LTR structures

González, Josefa & Petrov, Dmitri. (2012). "Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans." Methods in molecular biology (Clifton, N.J.). 855. 361-83.

Sequence structures to consider


ERV/LTR	LINE	SINE	
\$ TSD.pl		 polyA tail G/C rich 5' end 	• Term
 Consistent TSD length O True for 			• Can b dotpl
soloLTRs and FL ERV • 5' TG; 3' CA • ORFs?	• ORFs?	 Homology to LINE 3' sequence Exception is Alu 	• <u>Curat</u>

RNA polymerase III A and B box

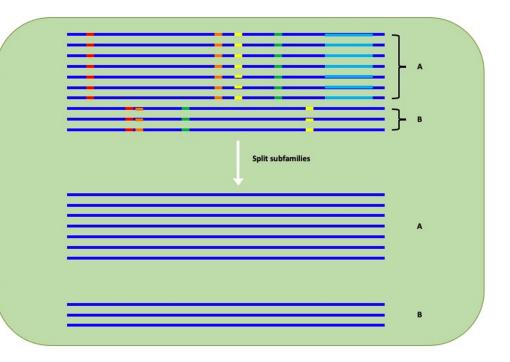
Hairpin structure similar to tRNA?

DNA

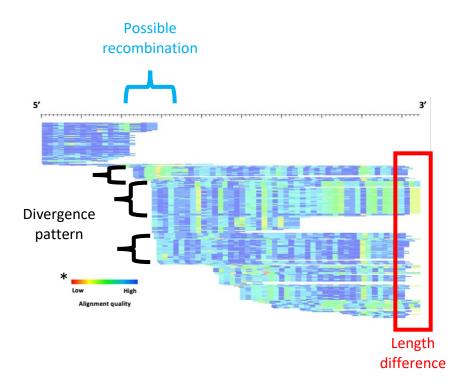
- ninal inverted eats (TIRs)
- be seen via olot
- ated termini

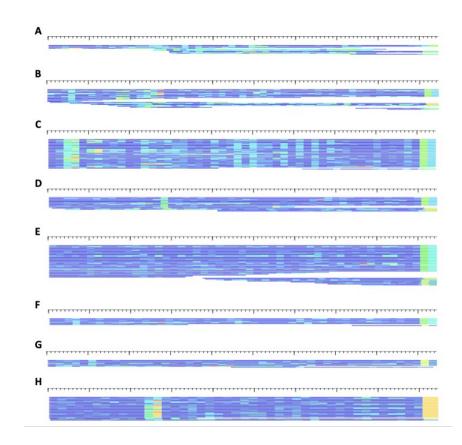
Reducing redundancy

\$ rmblast.pl <consensus_sequecnes.fa>
[options]

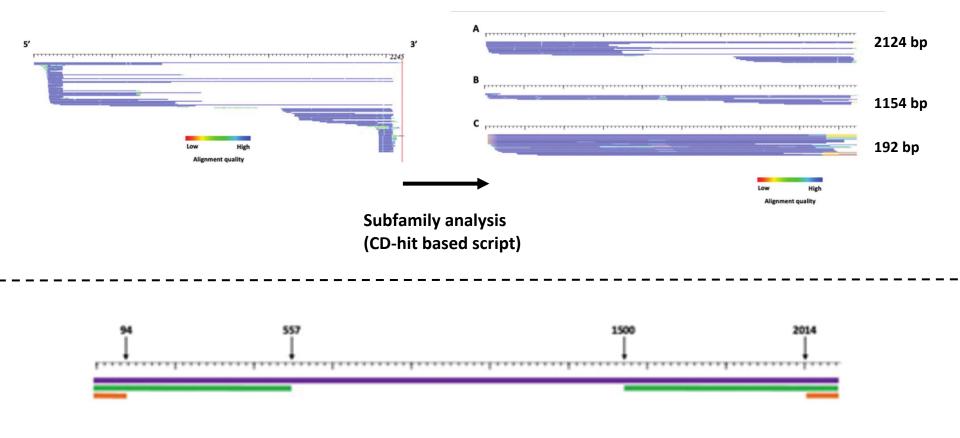

Crossmatch-like output (similar to RepeatMasker output)

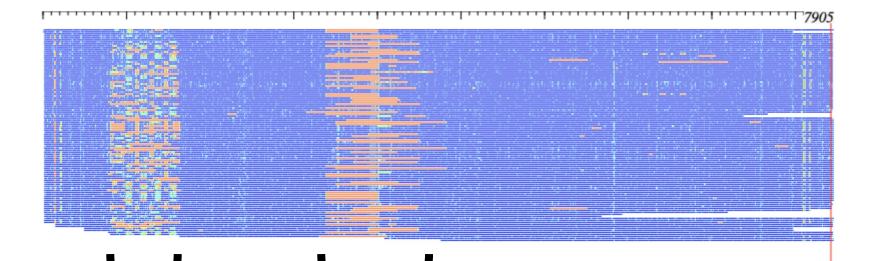
 $\label{eq:clusterPartialMatchingSubs.pl Analysis of example1} \end{tabular} Table 2 \end{tabular} Rmblast.pl Output of the Eight Subfamilies Produced by ClusterPartialMatchingSubs.pl Analysis of example1} \end{tabular}$


SW	Divergence	% del	% ins	Query	Query start	Query end	A left	Target	Target start	Target end	T_left
4920	0.88	0	0	Cluster0	1	571	0	Cluster0	1	571	0
2704	2.1	0.35	32.33	Cluster0	1	571	0	Cluster12	1	433	0
2009	11.88	2.21	3.06	Cluster0	210	571	0	Cluster8	132	490	0
4051	0.22	0	0	Cluster10	1	465	0	Cluster10	1	465	0
2941	10.54	7.1	0.2	Cluster10	1	465	0	Cluster7	2	498	0
2725	8.6	13.76	1.34	Cluster10	1	465	0	Cluster6	1	522	0
3822	0.23	0	0	Cluster12	1	433	0	Cluster12	1	433	0
2735	2.77	32.33	0.35	Cluster12	1	433	0	Cluster0	1	571	0
4579	0.19	0	0	Cluster2	1	522	0	Cluster2	1	522	0
3488	1.72	0	14.73	Cluster2	1	522	0	Cluster5	32	486	0
3076	4.62	1.93	14.5	Cluster2	4	522	0	Cluster8	29	490	0
4268	0.21	0	0	Cluster5	1	486	0	Cluster5	1	486	0
3503	5.56	2.06	1.85	Cluster5	1	486	0	Cluster8	4	490	0
3452	1.98	14.73	0	Cluster5	32	486	0	Cluster2	1	522	0
4562	0	0	0	Cluster6	1	522	0	Cluster6	1	522	0
2787	11.3	1.53	6.64	Cluster6	1	522	0	Cluster7	2	498	0
2734	7.66	1.34	13.76	Cluster6	1	522	0	Cluster10	1	465	0
4354	0	0	0	Cluster7	1	498	0	Cluster7	1	498	0
2941	9.86	0.2	7.1	Cluster7	2	498	0	Cluster10	1	465	0
2806	11.87	6.64	1.53	Cluster7	2	498	0	Cluster6	1	522	0
4346	0.41	0	0	Cluster8	1	490	0	Cluster8	1	490	0
3524	5.54	1.85	2.06	Cluster8	4	490	0	Cluster5	1	486	0
3045	5.19	14.5	1.93	Cluster8	29	490	0	Cluster2	4	522	0
2053	11.98	3.06	2.21	Cluster8	132	490	0	Cluster0	210	571	0


Subfamily assignment

- When to analyze subfamilies
 - Truncation patterns
 - DNA transposon deletion
 products
 - LTR recombination
 - Divergence
- Coseg
 - Full-length TE instances
- CD-HIT-based script
 - Length differences

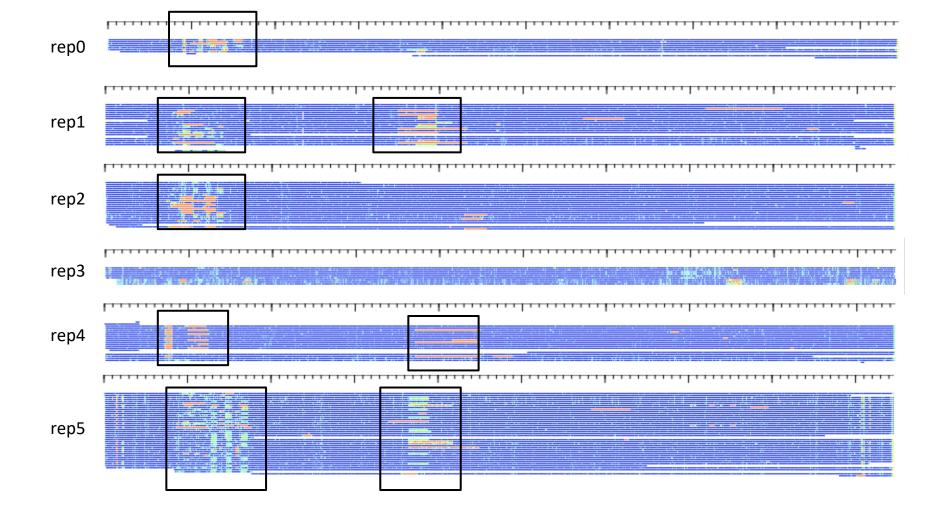

Subfamily assignment - LTR



* Each sequence is represented by a single row (sorted by start position) where the color gradient indicates alignment quality (red=low; blue=high) over 10bp non-overlapping windows.

Subfamily assignment - DNA

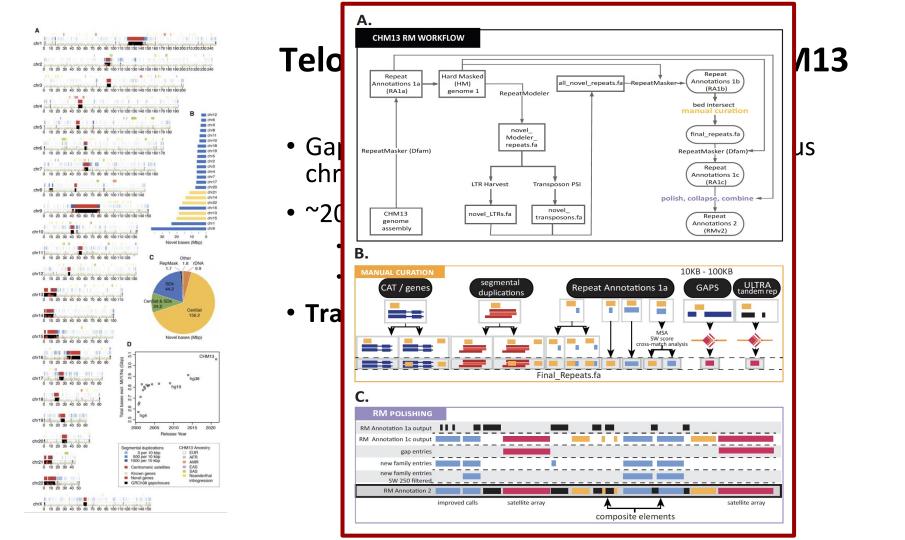
PtERV (*Pan troglodytes* endogenous retrovirus) subfamily analysis



PtERV subfamily analysis

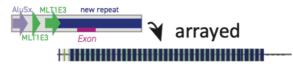
Strategy:

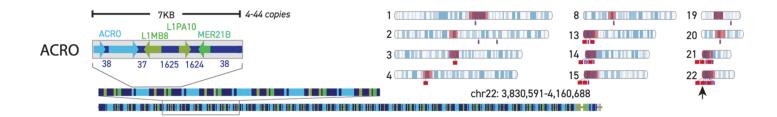
- 1. COSEG 3 subfamilies produced
- 2. Separate subfamilies by divergence and/or length polymorphism
 - cross_match
 - Divergence analysis
 - Split 3 COSEG subfamilies into 6 subfamilies

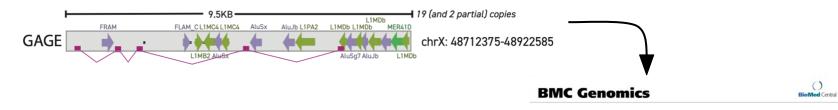

Subfamily	LTR	Int	LTR	Avg. div. (stdev)	Additional subfamilies?
rep0	1a	1b	1a	1.54 ± 0.9	2
rep1	1c	1c/d	1c/d	1.59 ± 0.55	2
rep2	1a	1a	1a	1.6 ± 1.06	2
rep3	2b/c	2a/b	2b/c	1.87 ± 0.71	2
rep4	1c	1a	1c/d	2.19 ± 0.81	2
rep5	1a/c	1b/c/d	1a/c	4.99 ± 2.18	3

Telomere-to-telomere (T2T) - CHM13

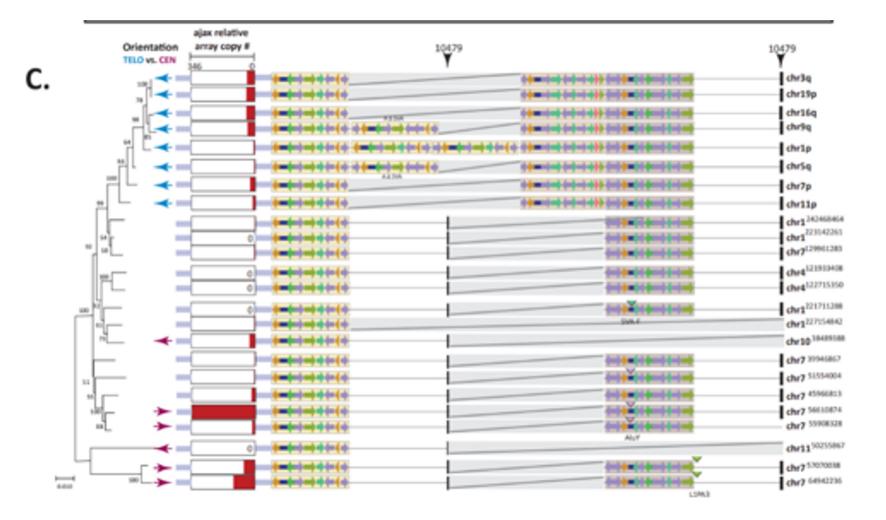
From telomere to telomere: the transcriptional and epigenetic state of human repeat elements

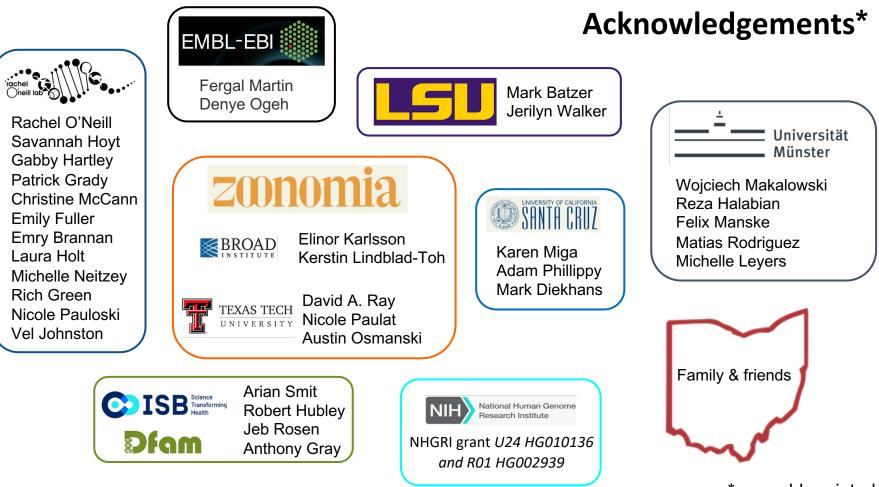

Savannah J. Hoyt, Jessica M. Storer, Gabrielle A. Hartley, Patrick G. S. Grady, Ariel Gershman, Leonardo G. de Lima, Charles Limouse, Reza Halabian, Luke Wojenski, Matias Rodriguez, D Nicolas Altemose, D Leighton J. Core, Jennifer L. Gerton, D Wojciech Makalowski, Daniel Olson, Jeb Rosen, Arian F. A. Smit, D Aaron F. Straight, D Mitchell R. Vollger, D Travis J. Wheeler, Michael C. Schatz, Evan E. Eichler, Adam M. Phillippy, D Winston Timp, Karen H. Miga, D Rachel J. O'Neill **doi:** https://doi.org/10.1101/2021.07.12.451456




Composite repeats - CHM13

19 composites - 2.8 Mb





Research article

Open Access

Analysis of the largest tandemly repeated DNA families in the human genome Peter E Warburton*, Dan Hasson, Flavia Guillem, Chloe Lescale, Xiaoping Jin and Gyorgy Abrusan

**very* abbreviated list!

Helpful links

Publications

Effect of different alignment tools on reconstructing TE sequences TE discovery methodologies Visualizing annotations

Advanced curation protocol

Beginner curation protocol

Tools

RepeatModeler utilities

<u>TE Aid</u>

<u>SODA</u>

FlexiDot github