EVOLUTION OF MITOCHONDRIAL IMPORT MACHINERY IN DICTYOSTELIUM DISCOIDEUM

Outline

Objectives

Background

- Eukaryotic tree of life
- Dictyostelium discoideum as model organism
- Mitochondrial evolution and import machinery

Methodology

Results

- mitochondrial import machinery in Dictyostelium
- phylogenetic relationships of eukaryotic mitochondrial β-barrles

Conclusions

Acknowledgements

Objectives

- 3
- identification of mitochondrial outer membrane import machinery in *Dictyostelium discoideum* (and *Acathamoeba castellanii*)
- verification of the current classification of *D. discoideum* and other *Amoebozoa* on the eukaryotic phylogenetic tree

History of living organisms classification

Linnaeus	Haeckel	Chatton	Copeland	Whittaker	Woese et al.	Woese et al.	Cavalier- Smith
1735	1866	1925	1938	1969	1977	1990	1998
2 kingdoms	3 kingdoms	2 empires	4 kingdoms	5 kingdoms	6 kingdoms	3 domains	6 kingdoms
(not treated)	Protista	Prokaryota	Monera	Monera	Eubacteria	Bacteria	Bacteria
					Archaebacteria	Archae	
Vegetabilia	Plantae	Eukaryota	Protista	Protista	Protista	Eukarya	Protista
							Chromista
				Fungi	Fungi		Fungi
			Plantae	Plantae	Plantae		Plantae
Animalia	Animalia		Animalia	Animalia	Animalia		Animalia

Six eukaryotic supergroups

(Adl et al. 2005)

Six eukaryotic supergroups

(Adl et al. 2005)

Dictyostelium discoideum

- model organism in studies of mitochondria, signal transduction, cytoskeletal function, endocytosis morphogenesis and cell division
- unique lifestyle (uni- and multicellular stages)
- genome 6 chromosomes, 34 Mb haploid, with 77% of A+T, codes 12,500 proteins

Endosymbiotic theory

- Lynn Margulis (1967, 1981) Alphaproteobacteria
 - similar size
 - 2 membranes
 - small circular DNA
 - own ribosomes
 - proteins homologous to bacterial proteins

Mitochondrial import machinery

9

Methodology

- 10
- Identification of <u>mitochondrial outer membrane</u> <u>import machinery</u> in *Dictyostelium*
 - similarity search (BLAST)
 - HMM search (HMMER)
 - validation of candidates (PSIPRED, CDD)

- Analysis of phylogenetic relationships of eukaryotic mitochondrial β-barrels (outer membrane channels)
 - dataset collection
 - msa
 - trees construction (NJ, ML)

Results / Mitochondrial import machinery in *D. discoideum*

VDAC, Tom40, Tom7

Sam50

- 396aa, Bacterial surface Antigen domain
- similar to mammalian Samm50

Mdm12

- 202aa, 1 TMH
- similar to yeast Mdm12

Mmm1

- 359aa, DUF2404 domain, 2 TMH
- similar to yeast Mmm1

Metaxin, Tom70

Results / Reductive evolution of mitochondrial import machinery

Dictyostelium discoideum - Amoebozoa, Mycetozoa, Dictyosteliida

12

 Entamoeba histolytica - Amoebozoa, Archamoebae, Entamoebidae (Tovar et al. 1999, Dolezal et al. 2010)

 Encephalizoon cuniculi - Opisthokonta, Fungi, Microsporidia (Waller et al. 2009)

Results / Dataset for phylogeny

Super-groups	Rank	No of species	Sam50	Tom40	VDAC
Amoebozoa	Eumycetozoa	4	2	3	4
	Acanthamoebidae	1	1	1	1
	Entamoebida	2	2	2	-
		7	5	6	5
Ophisthokonta	Metazoa	44	28	43	76
	Choanomonada (Choanoflagellata)	2	1	1	1
	Fungi	41	30	34	31
	Mesomycetozoa	2	-	1	2
		89	59	79	110
Archeplastida	Chloroplastida	30	12	16	48
-	Glaucophyta	2	-	-	3
		32	12	16	51
Chromalveolata	Haptophyta	3	1	2	3
	Stramenopiles	4	5	4	4
	Alveolata	12	1	12	4
	Cryptophyceae	1	-	1	-
		20	7	19	11
Excavata	Malawimonas	2	-	-	2
	Parabasalia	1	-	1	1
	Preaxostyla	1	-	1	-
	Heterolobosea	1	1	1	1
	Euglenozoa	3	-	-	3
		8	1	3	7
Rhizaria	Cercozoa	1	-	1	-
		1	0	1	0
	TOTAL	157	84	124	184

Results / VDAC ML tree

Results / VDAC ML tree

15

Results / Sam50 NJ tree

Results / Tom40 NJ tree

Results / Quality of trees

18

Conclusions

- A number of mitochondrial outer membrane import machinery subunits are missing in *D. discoideum*
 - secondary gene loss (?)
 - less hydrophobic preproteins for import (?)
 - conserved function and structure but not the sequence (?)
 - lineage specific counterparts (?)
- β-barrel proteins of mitochondrial outer membrane present high evolutionary rate
 - sequences are too diverged to obtain satisfying quality of alignment and therefore build well supported phylogenetic trees
- The position of *D. discoideum* on the eukaryotic tree cannot be verified with a high level of confidence with the usage of mitochondrial β-barrel outer membrane proteins

Conclusions

- A number of mitochondrial outer membrane import machinery subunits are missing in *D. discoideum*
 - secondary gene loss (?)
 - less hydrophobic preproteins for import (?)
 - conserved function and structure but not the sequence (?)
 - lineage specific counterparts (?)
- β-barrel proteins of mitochondrial outer membrane present high evolutionary rate
 - sequences are too diverged to obtain satisfying quality of alignment and therefore build well supported phylogenetic trees
- The position of *D. discoideum* on the eukaryotic tree cannot be verified with a high level of confidence with the usage of mitochondrial β-barrel outer membrane proteins

Conclusions

- A number of mitochondrial outer membrane import machinery subunits are missing in *D. discoideum*
 - secondary gene loss (?)
 - less hydrophobic preproteins for import (?)
 - conserved function and structure but not the sequence (?)
 - lineage specific counterparts (?)
- β-barrel proteins of mitochondrial outer membrane present high evolutionary rate
 - sequences are too diverged to obtain satisfying quality of alignment and therefore build well supported phylogenetic trees
- The position of *D. discoideum* on the eukaryotic tree cannot be verified with a high level of confidence with the usage of mitochondrial β-barrel outer membrane proteins

Acknowledgements

- Prof. Wojciech Makałowski
- Prof. Hanna Kmita
- Dr Małgorzata Wojtkowska
- Dr Olgierd Stobienia
- Dr January Weiner
- Institute of Bioinformatics

