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ABSTRACT 
Motivation: The large number of sequenced genomes required the 
development of software that reconstructs the consensus se-
quences of transposons and other repetitive elements. However, the 
available tools usually focus on the accurate identification of raw 
repeats and provide no information about the taxonomic position of 
the reconstructed consensi. TEclass is a tool to classify unknown 
transposable elements into their four main functional categories, 
which reflect their mode of transposition: DNA transposons, LTR 
repeats, LINEs and SINEs. TEclass uses machine learning (SVM) 
for classification based on oligomer frequencies. It achieves 90-97% 
accuracy in the classification of novel DNA and LTR repeats, and 
75% for LINEs and SINEs. 
Availability: http://www.compgen.uni-muenster.de/teclass, stand 
alone program upon request 

1 INTRODUCTION  
    Transposable elements (TEs) are present in the vast majority of 
multicellular organisms. Their correct identification is a critical 
step in the annotation of newly sequenced genomes. However, in 
order to annotate repeats, their consensus sequences first have to 
be identified. Traditionally TE consensi were reconstructed manu-
ally, but in recent years several tools have been developed to re-
construct transposable elements in newly sequenced genomes, for 
example RepeatScout (Price et al. 2005), RECON (Bao and Eddy, 
2002), or RepeatModeler  
(http://www.repeatmasker.org/RepeatModeler.html),which to-
gether with other tools integrates them into one pipeline. The iden-
tification of repetitive sequences usually results in the raw TE con-
sensus sequences, but does not provide information about the type 
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or mechanism for transposition of the reconstructed repeat. So far 
only a few tools, for example RepeatModeler, make an attempt to 
classify the newly reconstructed consensi, using sequence similar-
ity to known repeats. Similarity based classification of TEs is effi-
cient for TEs which originate from species which have repeats 
closely related to other known repeats. As the price of sequencing 
drops, more and more species are sequenced, especially from the 
so far neglected parts of the phylogenetic tree. However, in the 
case of taxonomic groups which until now received less attention, 
newly identified TEs frequently show no clear similarity to known 
repeats, and thus their classification requires other approaches.       
     The problem of classification of novel repeats is largely similar 
to the classification/assembly problems of microbial metagenomic 
research – since the vast majority of microorganisms are uncultur-
able at present, and a very large fraction of the newly sequenced 
microbial DNA shows no sequence similarity to sequences of 
known organisms. One solution for this problem is using oligomer 
profiles during the classification (McHardy et al. 2007) and as-
sembling the sequences with a similar profile, since the oligomer 
composition of many organisms is distinct. TEs were reported to 
have different sequence composition than genes (Andrieu et al. 
2004), and we have developed a simple and fast tool that uses a 
machine learning approach to classify unknown repetitive elements 
using the oligomer frequencies of the repeats. The tool (TEclass) 
can classify unknown TEs to their main taxonomic branches, 
which also reflect their mechanism of transposition: DNA trans-
posons, LTR repeats, and non-LTR repeats: LINEs and SINEs.  
 
2    METHODS 
    The classifiers were built using TE sequences available in RepBase 
(Jurka et al. 2005, RepeatMasker edition), the largest database of eu-
karyotic repetitive sequences. Since many entries in RepBase are highly 
similar to each other, and sometimes represent only different evolutionary 
stages of the same TE lineage, for the sequences that are more than 90% 
similar to each other we used only the longest one during classifier build-
ing. The length of TEs varies almost two orders of magnitude, from a few 
hundred bases to well above 10 kb, and many repeat types have characteris-
tic length ranges. We analyze repeats in different size categories: 0-600 bp, 
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601-1800 bp, 1801-4000 bp, >4000 bp, and built independent classifiers for 
all these length classes. We use LIBSVM (Chang and Lin 2001) as the 
SVM engine, with a Gaussian kernel. The classification process is binary, 
with the following steps (Fig. 1): forward versus reverse sequence orienta-
tion > DNA versus Retrotransposon > LTRs versus nonLTRs for retroele-
ments > LINEs versus SINEs for nonLTR repeats. The last step is per-
formed only for repeats with lengths below 1800 bp, because we are not 
aware of SINEs longer than 1800 bp.  Separate classifiers were built for 
each length class and for each classification step. In each classification step 
the sequence of a TE is represented as a vector of oligomer frequencies, 
which was used as the input for the SVM engine.  

Two complete sets of classifiers were built using tetramers and pentam-
ers, which are used in two separate rounds of the classification. The first 
step of the analysis is different from the rest both in the building of the 
classifiers and in the classification itself, because RepBase contains only 
sequences in the forward direction, but one cannot assume the same a priori 
about the tested TE consensi. The classifiers used in the first step were built 
with the RepBase repeats and their reverse complemented sequences. If an 
unknown repeat is classified as reversed, the further steps of the 
classification are performed with its reverse complemented sequence. Re-
peat identification is performed in two rounds. In the first the models based 
on tetramer frequencies are used, and in the second round the models based 
on pentamers. The result of the classification is the last step where the two 
rounds are in agreement, i.e. if the first classification round classifies a TE 
as LTR while the second as LINE it is reported as a retroelement. 

3 RESULTS AND DISCUSSION 
     Cross validation efficiency for the different classifiers varies 
between 77 and 97%, with the lowest efficiency in the forward 
versus reverse split. We found no dramatic difference between the 
performance of the models based on tetra, or pentamers. In most 
cases, selection of a subset of the oligo-features did not result in 
improved classification efficiency, thus the models include the full 
sets of oligomers (256 tetramers and 1024 pentamers). The classi-
fication efficiency for “unknown” repeats was determined as fol-
lows: first, the classifiers were built using the 12.11 version of 
RepBase (released on December 14th, 2007), and the efficiency of 
classification was determined for the repeats that were added to the 
database later, until the 13.06 release (August 1st, 2008; 1604 new 
repeats). The performance of TEclass is different for different re-
peat types; more than 90% of the DNA transposons and LTRs 
were classified correctly (Table 1), while on nonLTR repeats it 
achieved only about 75%. The lower sensitivity of LINE/SINE 
classification is mainly due to the accumulation of errors during 
the classification process. Alone, LINEs and SINEs can be sepa-
rated accurately: the cross validation efficiency is 92.4% for short 
(<600 bp) and 96.8% for medium length repeats (600-1800 bp). 
Note that this classification is not performed for repeats longer 
than 1800 bp, because SINEs are shorter than that. However, be-
fore this classification happens, a TE consensus sequence has to be 
also classified as a retroelement and subsequently as a non-LTR 
repeat; all these steps are error prone. We also classified the entire 
13.06 release of RepBase with classifiers built using the same re-
peats; using these classifiers, TEclass achieved almost 100% clas-
sification efficiency (Table 1), only about 1.1% of the repeats 
could not be classified. This proves the high potential of the pre-
sented method and the usefulness in the annotation of new ge-
nomes forged with poorly characterized repetitive elements. The 
most significant shortcoming is probably that it cannot distinguish 
between transposable and non-transposable elements, thus assumes 
that all input sequences are TE consensi. Most tandem repeats, 
tRNAs and many satellites can be safely identified before building 
a putative TE consensus sequence, However, if very abundant, 
duplications of noncoding sequence, which can have essentially 

any sequence composition may be reported as putative TE con-
sensi by TE reconstruction tools like RepeatScout or RECON. 
Separating such non-TE but repetitive sequence from TEs seem to 
be impossible with SVM classifiers. 
 

 
Fig. 1. Classification steps of TEclass. If the tested TE sequence is classi-
fied as reverse it is reverse-complemented, and the subsequent steps are 
performed on this sequence. 

Table 1. Classification efficiency of TEs. The first test set was the se-
quences that were added between 14th December 2007 and 1st August 2008 
to RepBase, and these classifiers were built independently using the 2007 
edition of RepBase, which didn’t contain these sequences. We also classi-
fied all TEs in the 2008 edition of RepBase, with classifiers built with the 
same repeats.  

  Classifiers 2007 Classifiers 2008 

 no. % correct no. % correct 

DNA 417 90.9 2323 99.9 

Retroelements 988 97.1 5646 99.8 

LTR 860 94.3 4303 99.9 

nonLTR 128 75 1319 99.8 

LINE 112 74.1 942 99.7 

SINE 16 81.2 377 99.7 

All classified 1405 91.5 7969 99.9 

indecisive 198  89  
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